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According to the model of Penzien and Watabe, the three translational
ground motion components on a specific point of the ground are statistically
noncorrelated along a well-defined orthogonal system of axes p, w, and v,
whose orientation remains reasonably stable over time during the strong mo-
tion phase of an earthquake. This orthotropic ground motion is described by
three generally independent response spectra Sa, Sb, and Sc, respectively. The
paper presents an antiseismic design procedure for structures according to the
above seismic motion model. This design includes a) determination of the
critical orientation of the seismic input, i.e., the orientation that gives the
largest response, b) calculation of the maximum and the minimum values of
any response quantity, and c) application of either the Extreme Stress Method
or the Extreme Force Method for determining the most unfavorable combi-
nations of several stress resultants (or sectional forces) acting concurrently at
a specified section of a structural member. [DOI: 10.1193/1.1463040]

INTRODUCTION

According to the idealization of Penzien and Watabe (1975), the seismic input at the
base of any given structural system can be considered as consisting of three simulta-
neously occurring and statistically noncorrelated components directed along a set of
principal axes: a vertical and two orthogonal horizontal excitations. In the initial phase
of the ground motion, the orientation of these principal axes is changing with time.
However, after a short period of time it becomes practically stable: the major principal
axis ‘‘p’’ (strong excitation) is horizontal and directed towards the epicenter, the inter-
mediate principal axis ‘‘w’’ is in the transverse (orthogonal) direction, and the minor
principal axis ‘‘v’’ (weak excitation) is vertical. (The chosen notation shall remind of
Penzien-Watabe model.) It is clear however, that this model is valid only when near-
source effects are absent.

The orthotropic ground motion postulated by the above idealization can be described
by three, generally independent, response spectra Sa, Sb, and Sc, respectively. A simpli-
fied form of this seismic input model has been already accepted by many modern earth-
quake design codes. The simplification usually consists of prescribing the same design
response spectrum Sa5Sb for both horizontal components (i.e., isotropic excitation) and
setting Sc5(2/3)Sa for the vertical one.
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In recent years, progress has been made on the response spectrum method of analysis
of structures subjected to the described multidirectional seismic excitation (Gupta and
Singh 1977; Gupta and Chu 1977; Smeby and Der Kiureghian 1985; Der Kiureghian
1981; Anastassiadis and Avramidis 1992, 1993; Anastassiadis 1993, Wilson et al. 1995;
Lopez and Torres 1996; Anastassiadis and Avramidis 1996; Menun and Der Kiureghian
1998; Lopez et al. 2000, 2001). However, the results of the related research work are not
yet widely known and, despite their simplicity in some cases of practical importance, are
not yet incorporated either in seismic design codes nor in the professional software
packages for structural analysis (Wilson 1996). As an example, clause 3.3.3.1 of the Eu-
ropean Seismic Code EC8/94, Part 1-2 demands the determination of the most unfavor-
able orientation of the bi-directional seismic excitation, thus ignoring the fact that for a
building subjected to isotropic bidirectional seismic input the peak values of all response
quantities do not depend on the input’s orientation. Furthermore, the spatial combination
of response quantities resulting from two (or three) seismic components is still based on
the empirical ‘‘percentage combination rules’’ of the 100-30-30 or 100-40-40 type, thus
overlooking the exact formulae for the extreme value of a given quantity as well as for
the concurrent values of two (or more) quantities (Gupta and Chu 1977, Anastassiadis
1993).

In this paper, the tensorial properties of an arbitrary response quantity of a structure
subjected to a general orthotropic1 seismic excitation, first presented by Anastassiadis
(1993), are re-derived using a simpler methodology and summarized. From these general
relations all relevant special cases, e.g., the bidirectional excitation with identical spec-
tral shapes of ratio l, are easily derived. Since the orientation of the principal axes is
unknown, exact relations and formulae are given, which can be used for a straightfor-
ward calculation of the critical seismic input angle ucr , i.e., the orientation that gives the
largest response, and of the maximum and minimum values of any response quantity.
Furthermore, on the basis of the above tensorial properties, two methods are presented
(Extreme Stress Method and Extreme Force Method) that can be used for determining
the most unfavorable combinations of two or more simultaneous stress resultants at any
cross section of a structural member in the general case of orthotropic seismic input.

With the aid of the two aforementioned methods, any unfavorable combination of
responses needed can be immediately calculated for a small number of critical values of
the seismic input angle u. The calculations are based on a few discrete points of the cor-
responding Gupta-envelope (Gupta and Singh 1977, Anastassiadis 1993) and do not re-
quire its explicit determination. In this way, the presented methods take advantage of the
reliability of the Gupta-envelope and, at the same time, avoid its explicit determination;
in the present case of orthotropic seismic excitation, that would require consideration of
all values of the seismic input angle u in the interval (0, p). Also avoided here is the use

1The terms ‘‘isotropic,’’ ‘‘anisotropic,’’ and ‘‘orthotropic’’ come from the Greek language and have exactly the
same meaning as the Greek words ‘‘isótropo§,’’ ‘‘anisótropo§,’’ and ‘‘oruótropo§.’’ The first of these words
means ‘‘having the same properties or behavior (‘tropos’) in any direction,’’ the second means ‘‘having different
properties or behavior in different directions,’’ and the third means ‘‘having different properties or behavior
along two directions orthogonal to each other.’’
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of the so-called supreme-envelope (Menun and Der Kiureghian 2000a, b), i.e., the union
of all Gupta-envelopes, the determination of which is extremely laborious and must be
carried out point by point.

The main disadvantage of any method using envelopes, either for orthotropic or for
isotropic seismic input, is not just the difficulty of the envelopes calculation in the 2-D
or 3-D response space, but also the more laborious determination of the contact point at
which the capacity curve or surface encompasses and touches the response envelope. In
applying the Gupta-method for the 2-D case, this specific problem can be dealt with
either graphically (by plotting the ellipse on the M-N interaction diagram) or analytically
(by replacing the ellipse by a circumscribed octagon and calculating the reinforcement
for each octagon corner; see Leblond 1980, Panetsos and Anastassiadis 1998). Similarly,
in the 3-D case, the ellipsoid is replaced by a circumscribed polyhedron with 24 corners.
It becomes obvious that, apart from any computational difficulties, the final response
quantities resulting from the Gupta-method, will always be larger than the exact ones
because the octagon or polyhedron corners lie outside the corresponding envelopes.

Greater difficulties arise concerning the supreme-envelope method. The determina-
tion of the contact point between the capacity curve or surface and the supreme-envelope
requires the use of a special numerical algorithm in an iterative manner, whose conver-
gence to a global or local maximum or minimum cannot be predicted from the outset.
(For more details see Menun and Der Kiureghian 2000b, p. 476).

In contrast to the above-mentioned difficulties, which are almost insuperable for
practicing engineers, application of the Extreme Stress and Extreme Force Methods is
straightforward and requires only elementary matrix manipulations that cause no par-
ticular problems at all.

The reliability of the Extreme Stress Method is identical to that of the original
method by Gupta and Singh 1977 (that makes no use of envelope octagons or envelope
polyhedra), as both methods share the same theoretical basis, differing only in their way
of application. In the Extreme Stress Method, the parametric equations for the response
quantities are used (with normal stress s as parameter), while in the Gupta-envelope
Method the parameter s is eliminated and the resulting response envelope is used in-
stead (see Anastassiadis 1993, pp. 95 and 96, for the isotropic case). The approximate
Extreme Force Method is also relatively reliable (see Panetsos and Anastassiadis 1998)
and, most important, its application is simple and effortless.

Finally, a numerical example illustrating the general case of a nonsymmetric multi-
story building under seismic excitation defined by different spectral shapes along the
principal excitation axes helps to clarify and confirm the presented theoretical results.

NOTATION

In the present paper, for reasons that will become obvious in the next section, two
types of seismic ground motions relative to the principal axes system Opwv are used:
the actual seismic motion and the transposed seismic motion. These motions include
only the two horizontal earthquake components, described by spectra Sa and Sb. The ver-
tical earthquake component (described by spectrum Sc) is ignored, because its effects on
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the structure can be studied separately and can then be combined with the effects due to
the horizontal components by the well-known SRSS combination rule.

ACTUAL SEISMIC MOTION

In this case, the design spectra Sa (epicentral) and Sb (lateral) are applied either in-
dividually (unidirectional inputs) or simultaneously (bidirectional inputs) in the direc-
tions of the principal axes p (epicentral) and w (lateral), as defined in the Introduction
(Figures 1a, b, c). The peak value of a typical response quantity R (force or displace-
ment) is denoted as

• R,pa and R,wb for unidirectional inputs, where the first index after the comma re-
fers to the direction of the seismic motion (p or w) and the second (a or b) to the
corresponding motion’s spectrum (Sa or Sb) (Figures 1a and b), and as

• R,p for bidirectional inputs, where the single index after the comma refers to the
direction in which the epicentral spectrum Sa is applied (Figure 1c).

Indices in front of the comma characterize the response quantity itself, while indices (i,j)
denote the number of the vibration mode to which the response quantity belongs (e.g.,
Mxi,pa , Myj,pa , Mxi,wb , Myj,wb or Mx,p , My,p , etc.). It is clear that the comma separates
indices referring to the seismic input (after the comma) to ‘‘nonseismic’’ indices (before
the comma).

TRANSPOSED SEISMIC MOTION

In this case, the roles of spectra Sa and Sb are interchanged: The epicentral spectrum
Sa is applied in the direction of the lateral principal axis w, while the lateral spectrum Sb

is applied in the direction of the epicentral principal axis p (Figures 1d, e, f). The mean-
ing of the indices remains unchanged. Thus, for bidirectional seismic input the corre-

Figure 1. Response quantity notation for unidirectional (a, b, d, e, a8, b8, d8, e8) and bidirec-
tional (c, f, c8, f8) seismic excitations.
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sponding peak value of a response quantity R is symbolized by R,w , where the single
index w after comma refers, as in the case of actual seismic motion, to the direction in
which the epicentral spectrum Sa is applied (Figure 1f). Finally, in Figures 1a8–f8 the
aforementioned notation is appropriately modified so as to refer to the fixed reference
system Oxyz of the building structure.

TENSOR TRANSFORMATION OF RESPONSE QUANTITIES
AND CRITICAL DIRECTION

We assume that the epicentral principal axis p of the ground motion is defined in
terms of an angle u relative to the x axis of the fixed reference system of the structure
(Figure 2).

If Sa is the design spectrum in the direction of p axis and Sb the design spectrum in
the direction of w axis (actual seismic motion), the actual peak value of a response
quantity R is the following (Der Kiureghian 1981, Wilson et al. 1981):

R,p
25R,pa

21R,wb
25(

i
(

j
«ij~Ri,paRj,pa1Ri,wbRj,wb! (1a)

In the above expression, «i,j denotes the correlation coefficient between the re-
sponses in modes i and j, and Ri,pa and Ri,wb denote the modal values of quantity R cor-
responding to the excitations defined by the indices after comma. If Sb is the design
spectrum in the direction of the p axis and Sa is the design spectrum in the direction of
the w axis (transposed seismic motion), then we obtain the transposed peak value of R
as

R,w
25R,pb

21R,wa
25(

i
(

j
«i,j~Ri,pbRj,pb1Ri,waRj,wa! (1b)

and the correlation term

Rpw5Rpw,a2Rpw,b5(
i

(
j

«i,j~Ri,paRj,wa2Ri,pbRj,wb! (1c)

The modal values Ri,p and Ri,w are connected to the modal values Ri,x and Ri,y through
the following relations, which are independent of the used earthquake spectrum Sa or Sb:

Ri,p51Ri,x cos u1Ri,y sin u (2a)

Ri,w52Ri,x sin u1Ri,y cos u (2b)

Figure 2. Definition of angle u.
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Inserting these relations in the right-hand terms of Equations 1a, 1b, and 1c, we ob-
tain (see Anastassiadis 1993):

R,p
25R,x

2 cos2 u1R,y
2 sin2 u1Rxy sin 2u (3a)

R,w
25R,x

2 sin2 u1R,y
2 cos2 u2Rxy sin 2u (3b)

Rpw52~1/2!~R,x
22R,y

2!sin 2u1Rxy cos 2u (3c)

where

R,x
25R,xa

21R,yb
25(

i
(

j
«i,j~Ri,xaRj,xa1Ri,ybRj,yb! (4a)

R,y
25R,xb

21R,ya
25(

i
(

j
«i,j ~Ri,xbRj,xb1Ri,yaRj,ya! (4b)

Rxy5Rxy,a2Rxy,b5(
i

(
j

«i,j ~Ri,xaRj,ya2Ri,xbRj,yb! (4c)

It is important to note that Equations 3a, 3b, and 3c are similar to the transformation
rules for the components of a symmetric second-order tensor. Consequently, the four
quantities R,x

2 , R,y
2, Rxy , and Ryx can be considered as components of a symmetric

second-order tensor R, represented analytically by matrices:

R05FR,x
2 Rxy

Ryx R,y
2G

and

Ru5FR,p
2 Rpw

Rwp R,w
2G

in the Oxy and Opw reference systems, respectively. This tensor is similar to the well-
known plane stress tensor:

Fsx txy

tyx syG
which is familiar to any engineer from elementary Mechanics of Materials. Due to its
tensorial character, the arbitrary response quantity R is characterized by the following
properties that are common to all symmetric second-order tensors:

(a) The trace and the determinant of the above matrices do not depend on the orien-
tation of the earthquake excitation:
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R,x
21R,y

25R,p
21R,w

2 (5a)

and

R,x
2R,y

22Rxy
25R,p

2R,w
22Rpw

2 . (5b)

(b) There is a specific earthquake orientation defined by the axes (I, II) for which the
correlation term Rpw vanishes. This specific orientation is defined by an angle ucr5uo or
ucr5uo1p/2, where uo the acute angle (2457<u0<1457):

uo5~1/2!tan21@2Rxy /~R,x
22R,y

2!#, (6)

according to Equation 3c and the indications in Figure 3.

For the bidirectional earthquake of Figure 4a, as well as for its transposition in Fig-
ure 4b, the response quantity R2 takes the following maximum and minimum values,
respectively:

max R25R,I
25~R,x

21R,y
2!/2

1A@~R,x
22R,y

2!/2#21Rxy
2 (7a)

min R25R,II
25~R,x

21R,y
2!/2

2A@~R,x
22R,y

2!/2#21Rxy
2 (7b)

Figure 3. Determination of unfavorable seismic directions.

Figure 4. Favorable and unfavorable seismic directions.
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The form of these relations allows for a graphical calculation of R,I
2, R,II

2 and angle ucr

using Mohr’s circle (Figure 5).

(c) The correlation term Rpw takes its maximum value:

max Rpw5R125~1/2!~R,I
22R,II

2! (8)

for a seismic excitation along axes 1 and 2, which are defined by the bisectors of the
angles formed by the axes I and II. For these seismic directions, a response quantity R
takes the value:

R,1
25R,2

25~1/2!~R,I
21R,II

2!, (9)

i.e., the interchange of the input spectra Sa and Sb along the axes 1 and 2 does not affect
the peak value of R.

It is clear from the preceding considerations that the calculation of the maximum and
minimum values of an arbitrary response quantity requires four independent dynamic
analyses of the structure, applying input spectra Sa and Sb as shown in Figures 1a8–b8
and 1d8–e8. All necessary terms, e.g., the modal values in the right-hand sides of Equa-
tions 4a, 4b, and 4c, are routinely calculated by current standard linear dynamic analysis
programs. Then, using Equations 4a, 4b, and 4c, R,x

2 , R,y
2, and Rxy can be computed, and

from Equations 7a and 7b the maximum and minimum values of any response quantity
R can be immediately obtained, with no need to previously calculate the critical angle
ucr . Finally, the contribution of the vertical seismic component is to be added to the
above values, according to the SRSS combination rule. It is obvious that all mentioned
relations can be easily implemented in current standard software for multicomponent
seismic analysis.

SPECIAL CASES

ISOTROPIC SEISMIC EXCITATION (Sa5Sb)

In this case:

R,x5R,y and R,p5R,w

and, according to Equation 5a,

Figure 5. Graphical calculation of response extreme values using Mohr’s circle.

Ioannis Avramidis
ISOTROPIC SEISMIC EXCITATION (Sa5Sb)In this case:R,x5R,y and R,p5R,wand, according to Equation 5a,
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R,x
25R,p

2 , (10)

that is, the value of R does not depend on the earthquake input angle u.

UNIDIRECTIONAL SEISMIC EXCITATION (Sb50)

In this case:

R,yb50 and R,xb50

and Equations 4a, 4b, and 4c can now be written as follows:

R,x
25R,xa

25(
i

(
j

«i,j Ri,xaRj,xa (11a)

R,y
25R,ya

25(
i

(
j

«i,j Ri,yaRj,ya (11b)

Rxy5Rxy,a5(
i

(
j

«i,j Ri,xaRj,ya (11c)

By inserting these values for R,x
2 , R,y

2 and Rxy in Equations 6 and 7, the critical direction
as well as the maximum and minimum response values can be calculated.

BIDIRECTIONAL EXCITATION USING ANALOGOUS SPECTRA (Sb5lSa)

In this case (loading ratio 0,l,1):

R,yb5l R,ya

R,xb5l R,xa

Rxy,b5l2 Rxy,a

Equations 4a, 4b, and 4c can now be written as

R,x
25R,xa

21l2R,ya
2 (12a)

R,y
25l2R,xa

21R,ya
2 (12b)

Rxy5~12l2!Rxy,a (12c)

Similarly, Equation 6 gives

u05~1/2!tan21@2Rxy,a /~R,xa
22R,ya

2!# (13)

Furthermore, according to Equations 7a and 7b, the maximum and minimum responses
are

max R25~11l2!~R,xa
21R,ya

2!/21~12l2!A~R,xa
22R,ya

2!/2]21Rxy,a
2 (14)

Ioannis Avramidis
R,x25R,p2 , (10)that is, the value of R does not depend on the earthquake input angle u.
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min R25~11l2!~R,xa
21R,ya

2!/22~12l2!A@~R,xa
22R,ya

2!/2#21Rxy,a
2 (15)

It is apparent that the critical earthquake input angle ucr is not a function of the load-
ing ratio l. However, it is important to note that the maximum response quantity max R2
does in fact strongly depend on the loading ratio l.

DESIGN FORCES

In general, the design of a structural member cannot be based only on the extreme
value exR of a single stress resultant (or internal force) R. In most cases, especially in
reinforced concrete structures, the knowledge of the most unfavorable combination of
two or even three simultaneous internal forces at a specified cross section (briefly, ‘‘sec-
tional forces’’) of a structural element is required. The use of the extreme values of the
relevant sectional forces, which, in general, do not occur simultaneously, leads, for the
most part, to unnecessary over-dimensioning.

In seismic design codes this situation is usually dealt with by allowing the empirical
‘‘percentage combination rules’’ of the 100-30-30 or 100-40-40 type, for which no the-
oretical evidence is available (Wilson et al. 1995; Menun and Der Kiureghian 1998,
2000a). In contrast to this common practice, exact methods in the case of isotropic seis-
mic excitation (Gupta and Singh 1977, Gupta and Chu 1977) as well as in the case of
isotropic or orthotropic excitation (Anastassiadis 1993) are not widely known and, de-
spite their advantages, have not yet been implemented in structural analysis software
packages.

Here, two recently developed methods are presented, which can be used for the de-
termination of ‘‘unfavorable combinations’’ of probable simultaneous sectional forces in
case of an orthotropic seismic excitation. In the case of isotropic seismic action, see
Anastassiadis 1993, Anastassiadis and Avramidis 1996, and Panetsos and Anastassiadis
1998.

THE EXTREME STRESS METHOD

In general, the analysis of R/C structures, whether seismic or not, is carried out in
two clearly separated phases:

• In the first phase, the sectional forces (or internal forces, i.e., bending moments,
axial forces, etc.) at all relevant member sections are calculated, assuming that
the structure’s behavior is linear-elastic and the R/C member sections homoge-
neous.

• In the second phase, the design (proportioning, sizing) of the structural members
is carried out, based on the sectional forces determined in the first phase and
taking into account cracking of the sections as well as nonlinear material prop-
erties.

The determination of the ‘‘unfavorable combinations’’ of the relevant sectional forces
in the structure pertains to the first phase. Consequently, it is legitimate to provisionally
calculate normal and shear stresses at a specified section as well as the corresponding
bending moments, shear forces and axial forces according to the rules known from el-
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ementary Mechanics of Materials (i.e., assuming homogeneous sections). Thus, for ex-
ample, at any point in a rectangular column section, it is possible to provisionally deter-
mine the axial stress s corresponding to a prescribed probable simultaneous
combination of sectional forces Mj , Mh , N that ‘‘produce’’ stress s. Now, if s is chosen
to be the extreme stress exsk (with positive or negative sign) at one of the corners of the
rectangular section, the corresponding combination of sectional forces Mjk , Mhk , Nk is a
probable ‘‘unfavorable combination’’ of simultaneous sectional forces, because of the
very fact that this combination ‘‘produces’’ an extreme stress in the section. For the four
corners k51, 2, 3, 4, a total number of (234)58 unfavorable combinations (four for
positive-signed exsk and four for negative-signed exsk) results, which cover all possible
cases of extreme stresses to be generated in a rectangular section.

Based on the above idea, the extreme stress method can be applied in case of ortho-
tropic seismic excitation as follows: First, using Equations 7a and 7b, the extreme nor-
mal stresses

exsk56Amax sk
2, k51,2, . . . (16)

and their corresponding critical directions ucr,k are calculated at the corners of the mem-
ber section under consideration. For the now known unfavorable orientation of the ortho-
tropic seismic excitation (Figure 4a), the probable simultaneous (to exsk) value of a sec-
tional force S is determined from (Gupta and Chu 1977):

Ssk
5Csks /exsk (17)

where:

Csks5(
i

(
j

«i,j~ski,IaSj,Ia1ski,IIbSj,IIb! (18)

In this relation, ski and Sj (i,j51,2,...,N) denote the modal values of sk and S for
seismic excitation indicated by the indexes after comma. After transformation of these
modal values according to Equations 2a and 2b, the correlation coefficient Csks can be

written as:

Csks5Csks,x cos2 ucr,k1Csks,y sin2 ucr,k1Csks,xy sin 2ucr,k (19)

where:

Csks,x5(
i

(
j

«i,j ~ski,xaSj,xa1ski,ybSj,yb! (20a)

Csks,y5(
i

(
j

«i,j ~ski,xbSj,xb1ski,yaSj,ya! (20b)

Csks,xy5~1/2!F(
i

(
j

«i,j ~ski,xaSj,ya1ski,yaSj,xa!2(
i

(
j

«i,j ~ski,xbSj,yb1ski,ybSj,xb!G
(20c)
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In the above equations, the modal values of sk and S for the seismic excitations
shown in Figures 1a8–b8 and 1d8–e8 are used. For a given ucr,k , the correlation factor
Csks is calculated from Equation 19. Then, the probable simultaneous (to exsk) value of

sectional force S follows from Equation 17. This calculation procedure is repeated for all
the other sectional forces that must be taken into account for the section’s design (bend-
ing moments, normal forces, etc.). The set of all sectional forces S1 ,S2 , . . . concurrent
to exsk define a specific point on the Gupta-envelope in the corresponding 2-D or 3-D
response space. Finally, in the same way, the ‘‘unfavorable combinations’’ of sectional
forces are determined, which correspond to extreme shear stresses extk in the section.

THE APPROXIMATE EXTREME FORCE METHOD

This method is based on the following, relatively reliable, rule: Each unfavorable
combination of two or more sectional (or internal) forces at a structural member’s sec-
tion comprises the extreme value of one of these forces and the probable simultaneous
values of the others. The extreme values of any given sectional force R are (see Equation
7a):

exR56AmaxR2 (21)

and the corresponding critical orientation angle ucr,r can be calculated from Equation 6.
For a seismic excitation according to Figure 4a, the probable simultaneous (to exR) value
of any other sectional force S is (Gupta and Chu 1977):

SR5Crs /exR (22)

where

Crs5(
i

(
j

«i,j~Ri,IaSj,Ia1Ri,IIbSj,IIb! (23)

In this expression of the correlation factors Crs , Ri and Sj (i,j51,2,...,N) denote the
modal values of sectional forces R and S for seismic excitations as indicated by the in-
dexes after comma. After transformation of these modal values according to Equations
2a and 2b, the correlation coefficient Crs can be written as:

Crs5Crs,x cos2 ucr,r1Crs,y sin2 ucr,r1Crs,xy sin 2ucr,r (24)

where

Crs,x5(
i

(
j

«i,j~Ri,xaSj,xa1Ri,ybSj,yb! (25a)

Crs,y5(
i

(
j

«i,j~Ri,xbSj,xb1Ri,yaSj,ya! (25b)

Crs,xy5~1/2!F(
i

(
j

«i,j~Ri,xaSj,ya1Ri,yaSj,ya!2(
i

(
j

«i,j~Ri,xbSj,yb1Ri,ybSj,xb!G (25c)
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In the above equations, the modal values of R and S for the seismic excitations
shown in Figures 1a8–b8 and 1d8–e8 are used. For a given ucr,k , the correlation factor Crs

is calculated from Equation 24. Then, the probable simultaneous (to exR) value of sec-
tional force S follows from Equation 22. This calculation procedure is repeated for all
the other sectional forces that must be taken into account for the section’s design (bend-
ing moments, normal forces, etc.). The set of all sectional forces (exR included) concur-
rent to exR define a specific point on the Gupta-envelope in the corresponding 2-D or
3-D response space. As an example, in the familiar case of biaxial bending of an axially
stressed element, the following six combinations of probable simultaneous sectional
forces arises for the element under consideration:

1. exMj~1!, Mh,1 , N1 4. exMj~2!, 2Mh,1 , 2N1

2. Mj,2 , exMh~1!, N2 5. 2Mj,2 , exMh~2!, 2N2

3. Mj,3 , Mh,3 , exN~1! 6. 2Mj,3 , 2Mh,3 , exN~2!

The extreme values exMj , exMh , exN can be calculated using Equation 21 while the
corresponding concurrent forces for each combination are determined from Equation 22.

NUMERICAL EXAMPLE

The theoretical results of the foregoing sections will be applied to a multistory build-
ing consisting of six similar stories with a total height H5633.0 m=18.0 m (Figure 6).

Each story has a mass m579.46t and a mass moment of inertia Jz51086tm2. The
strong seismic motion in the p-axis’ direction and the orthogonal seismic excitation in
the w-axis’ direction are defined by the following design response spectra, respectively:

Sa~T!5AaRa~T!/q

and

Sb~T!5AbRb~T!/q

where Aa50.16g and Ab50.12g are the peak ground accelerations, q52 is the behavior
factor, and Ra(T), Rb(T) denote the spectra shapes shown in Figure 6.

Using these numerical data, four independent response spectrum analyses in the di-
rections of the building’s axes x and y have been carried out, according to the four seis-
mic excitations defined in Figures 1a8–b8 and 1d8–e8. For these analyses the well-known
computer program SuperEtabs is used. A damping ratio j55% and the seven leading
mode shapes, with periods equal to 0.775, 0.690, 0.382, 0.251, 0.216, 0.145, 0.122 sec,
respectively, are taken into account. For each seismic excitation, the modal values ski of
the normal stresses sk (k51, 2, 3, 4) at the four corners of the fixed-end section (base)
of column C3 are calculated. Furthermore, the modal values Mji , Nzi , Mhi of the internal
forces Mj , Nz , Mh at the same section are determined.

APPLICATION OF THE EXTREME STRESS METHOD

First, by using Equations 6, 7, and 16, the magnitudes of extreme stresses exsk and
the corresponding critical angles ucr , defining the orientation of epicentral axis p, have
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been calculated. The results are given in Table 1 along with the ‘‘unfavorable combina-
tions’’ of stress resultants Mj , Nz , Mh . The latter have been determined by applying
Equation 17 and correspond to the positive extreme values exsk . (For the negative ex-
treme values, the same combinations with opposite signs are valid).

Then, by adding stress resultants Mj,g525.97 kNm, Nz,g52569.13 kN and Mh,g

512.69 kNm due to vertical, i.e., gravity, loads (G+0.3Q) to the values in Table 1, the
final unfavorable design combinations of internal forces are obtained (Table 2).

Figure 6. Typical floor plan of a 6-story building and design response spectra.

Table 1. Unfavorable combinations of seismic action effects

k
exsk(1)
[kN/m2]

ucr,k

[°]
Mj

[kNm]
Nz

[kN]
Mh

[kNm]

1 19267.83 18.34 +85.63 230.92 +53.83
2 13577.46 120.00 275.95 2430.97 +46.20
3 21401.55 28.97 275.62 +109.17 263.52
4 20799.62 117.17 250.77 +449.79 +71.63
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The maximum reinforcement area Atot515.34 cm2 results from the fourth combina-
tion in Table 2. Last column in Table 2 shows the reinforcement Atot* corresponding to
the rectangular envelope. Obviously, Atot* is always greater than Atot . For the critical
combination of the example under consideration, this increase reaches 25%.

APPLICATION OF THE EXTREME FORCE METHOD

First, by using Equations 6, 7, and 21, the magnitudes of extreme internal (or sec-
tional) forces exMj , exMz , exMh and the corresponding critical angles ucr , defining the
orientation of epicentral axis p, have been calculated. The results are given in Table 3
along with the values of the other two sectional forces that are simultaneous to the posi-
tive extreme magnitudes exMj(1), exMz(1), exMh(1), and have been calculated to
Equation 22.

Then, by adding the sectional forces due to gravity loads to the values in Table 3, the
final unfavorable design combinations are obtained (Table 4).

The maximum reinforcement area Atot512.88 cm2 results from the fifth combination
in Table 4 and is smaller than the maximum reinforcement area Atot515.34 cm2 calcu-
lated according to the extreme stress method (see Table 2). Last column in Table 4 shows
the reinforcement Atot* corresponding to the rectangular envelope. Obviously, Atot* is
always greater than Atot . For the critical combination of the example under consider-
ation, this increase reaches 54.5%.

Table 2. Unfavorable design combinations

k exsk

Mj

[kNm]
Nz

[kN]
Mh

[kNm]
Atot

[cm2]
Atot*
[cm2]

1 exs1(1) +79.66 2600.05 +56.52 12.46 18.84
2 exs2(1) 281.92 1000.10 +48.89 14.21 19.14
3 exs3(1) 281.59 2459.96 260.83 14.14 18.55
4 exs4(1) 256.74 2119.34 +74.32 15.34 19.16
1 exs1(2) 291.59 2538.21 251.14 14.63 18.84
2 exs2(2) +69.98 2138.16 243.51 12.72 19.14
3 exs3(2) +69.65 2678.29 +66.21 11.62 18.55
4 exs4(2) +44.80 1018.91 268.94 11.09 19.16

Table 3. Unfavorable combinations of seismic action effects

k
extreme

force
ucr,i

[°]
Mj

[kNm]
Nz

[kN]
Mh

[kNm]

1 exMj(1) −11.27 +93.14 +168.28 +17.34
2 exNz(1) +110.40 +60.66 +463.10 −56.61
3 exMh(1) +52.03 +32.38 −230.87 +81.81
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In general, as in case of isotropic seismic excitation (see Panetsos and Anastassiadis
1998), the extreme force method turns up to be less unfavorable then the extreme stress
method.

CONCLUSIONS

In this paper, a general solution for the three-component orthotropic seismic excita-
tion problem is presented. It offers, within the framework of response spectrum analysis,
a rational procedure for determining the maximum and minimum values of any typical
response quantity R of a structure along with the simultaneous values of other related
quantities that are relevant for the structural members’ design in order to avoid unnec-
essary over-dimensioning. It also provides a simple means of determining the critical
orientation ucr associated with the extreme values of R. Thus, knowledge of the orienta-
tion of the principal axes is not required beforehand. In contrast to the SRSS rule pre-
scribed by many design codes, the presented method can explicitly account for the cor-
relation of the different seismic components by incorporating in its formulation the
Penzien-Watabe model of ground motion. This fact makes it particularly useful in the
dynamic analysis of curved bridges. It is shown that for equal horizontal design spectra,
the structure’s response quantities due to bidirectional seismic excitation are not a func-
tion of the earthquake’s orientation. This is not the case if empirical rules without the-
oretical justification are used. Finally, two methods are presented, which allow for the
determination of the most unfavorable combinations of two or more internal (or sec-
tional) forces acting concurrently at a structural member’s section (e.g., two bending mo-
ments and an axial force at a column’s base). All given relations are of a computationally
simple form and can be easily implemented in current standard dynamic analysis soft-
ware. A numerical example clarifies and confirms the presented theoretical results.
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